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background and motivation



3–orbifolds

An orientable 3–dimensional orbifold O is a space locally
modeled on B3/G where B3 is a 3–ball and G ⊂ SO(3) is a finite
group acting on B3 by rotations.

An orientable 3–orbifold O can be described by specifying:

• an orientable 3–manifold XO (the base space), and
• an embedded trivalent graph ΣO with edges labeled by
integers ≥ 2 (the singular locus).



3–orbifolds

ΣO and its labeling specify the local groups G. The integer
labeling an edge is called the torsion order of the edge.

A neighborhood of a point in an edge labeled n is the quotient
of B3 by Zn acting by rotations.

A neighborhood of a vertex of ΣO is the quotient of B3 by an
orientation preserving spherical triangle group.



Hyperbolic 3–orbifolds

A 3–orbifold is called hyperbolic if O = H3/Γ where Γ is a
discrete subgroup of Isom+(H3). Torsion in Γ gives rise to the
singular locus.

What does this look like?



Figure 1: Looking along an edge labeled 9 in the hyperbolic structure
on m004(9, 0).



Figure 2: Looking towards a (2, 3, 5) vertex in a doubled hyperbolic
tetrahedron.



Hyperbolic 3–orbifolds

A 3–orbifold is called hyperbolic if O = H3/Γ where Γ is a
discrete subgroup of Isom+(H3). Torsion in Γ gives rise to the
singular locus.

Dunbar and Meyerhoff proved that volumes of hyperbolic
3–orbifolds form a closed, non–discrete, well–ordered subset
of R+.



Motivation

Question
What is the hyperbolic 3–orbifold of smallest volume?

Answer
Gehring-Marshall-Martin: The unique hyperbolic 3–orbifold of
smallest volume, Omin, is shown below. It’s volume is 0.03905.
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Figure 3: Base space is S3. Unlabeled edges have 2–torsion.

http://personal.morris.umn.edu/~catkinso/omin.gif
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Motivation

We’ll give an answer a family of related questions:

Question
For an integer n ≥ 2, what is the lowest volume hyperbolic
3–orbifold with all torsion orders bounded below by n?



Link orbifolds

Definition
For n ≥ 2, let Ln be the set of all orientable hyperbolic
3–orbifolds with non–empty singular locus and with all torsion
orders bounded below by n.

Lemma
For n ≥ 4, the singular locus of every element of Ln is a closed
1–manifold.

We call these link orbifolds.



main results



3–torsion

Theorem (A-Futer, 2016)
Every element of L3 has volume at least 0.2371.

Conjecture
The unique lowest–volume element of L3 is the orbifold with
base space S3 and singular locus the knot 52 labeled 3.
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Figure 4: Conjectured volume minimizer in L3 of volume
0.3142 · · · = Vol(MW)/3. MW is the Weeks manifold.



Main theorem

Theorem (A-Futer, 2016)
For all n ≥ 4, the unique lowest–volume element of Ln is the
orbifold Pn, with base space S3 and singular locus the figure–8
knot labeled n.

n

We’ll focus on this theorem today.



Main theorem

Theorem (A-Futer, 2016)
For all n ≥ 4, the unique lowest–volume element of Ln is the
orbifold Pn, with base space S3 and singular locus the figure–8
knot labeled n.

n Vol(Pn)
4 0.50747080320
5 0.93720685476
6 1.22128745890
7 1.41175465336
8 1.54386327614
9 1.6386006808
∞ 2.0298832128

Table 1: Vesnin and Mednykh have formula for Vol(Pn) in terms of
Lobachevsky function.



An application to manifolds with symmetry

Theorem (A-Futer, 2016)
Let M be an orientable hyperbolic 3–manifold of finite volume
and let G be a group of orientation preserving isometries of M.
Let p be the smallest prime dividing |G|, or else 1 if G is trivial.
Then

Vol(M) ≥ |G|·wp, where wp =


Vol(Omin) ≥ 0.03905 p = 2
0.2371 p = 3
Vol(P5) ≥ 0.9372 p = 5
Vol(MW) ≥ 0.9427 otherwise.



elements of proof



Main theorem

Theorem (A-Futer, 2016)
For all n ≥ 4, the unique lowest–volume element of Ln is the
orbifold Pn, with base space S3 and singular locus the figure–8
knot labeled n.



Proof outline

1. Show that MO = O \ ΣO is one of a finite list of cusped
hyperbolic 3–manifolds.

2. For n ≤ 14, minimizer must be one of finitely many orbifold
Dehn fillings of the finitely many manifolds identified in
step (1). Rigorous computer search for volume minimizer.

3. For n ≥ 15, use analytic estimates on the change in
volume when filling one of the candidate cusped
manifolds identified in (1).
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1. Topological reduction

Let MO = O \ ΣO .

Theorem
Suppose that n ≥ 4 and that O ∈ Ln is a volume minimizer.
If n ̸= 4, 8, then MO is one of m003 or m004.
If n = 4, 8, then MO ∈ C where

C = {m003,m004,m006,m007,m009,m010,
m011,m015,m016,m017}.

(mXXX are SnapPea census manifolds)



1. Topological reduction (MO ∈ C)

Theorem is a consequence of a theorem of Gabai, Meyerhoff,
and Milley.

Theorem
If M is a one–cusped hyperbolic 3–manifold with
Vol(M) ≤ 2.848, then M ∈ C.

We show that if O minimizes volume in Ln, then
Vol(MO) ≤ 2.848.



1. Topological reduction (Vol(MO) ≤ 2.848)

Combining work of Gehring, Marshall, and Martin giving lower
bounds on the collar radius around singular locus in terms of
torsion order with work of Agol and Dunfield controlling the
change in volume when drilling, we obtain

Proposition

Vol(O) ≥ (x2n − 1)3/2

x3n

(
1+ 0.91

xn

)−1
· Vol(MO),

where xn = cosh(2rn) and rn is the collar radius.
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1. Topological reduction (Vol(MO) ≤ 2.848)

Figure 5: = 2.848 · f(n), = Vol(Pn). We know that
Vol(O) > 2.848 · f(n) if Vol(MO) > 2.848.

If the volume of MO > 2.848, then the volume of O is greater
than that of Pn.



Proof outline

1. Show that MO = O \ ΣO is one of a finite list of cusped
hyperbolic 3–manifolds.

2. For n ≤ 14, volume minimizer must be one of finitely many
orbifold Dehn fillings of the manifolds identified in step
(1). Rigorous computer search for volume minimizer.

3. For n ≥ 15, use analytic estimates on the change in
volume when filling one of the candidate cusped
manifolds identified in (1).



2. n ≤ 14. Computer search through finitely many orbifolds

If Vol(O) ≤ Vol(Pn), then MO ∈ C and O is a Dehn filling of MO .

For each M = MO , a theorem of Futer, Kalfagianni, and Purcell
implies that the Dehn filling coefficients (a,b) of the filling
slope s = aλ+ bµ must lie in the set

Fn
M :=

{
(a,b) ∈ Z2 : 1−

(
2π
ℓ(s)

)2
≤

(
Vol(Pn)
Vol(M)

)2/3
}

This is a finite set.



2. n ≤ 14. Computer search through finitely many orbifolds

For each of the 205 manifold–slope pairs, we use Snap and
code developed by Moser and Milley to rigorously show that
each filling has volume greater than that of Pn (except for Pn
itself).
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3. n ≥ 15. Analytic estimates on change in volume when filling.

For each n ≥ 15, the minimal volume element of Ln is a Dehn
filling of either m003 or m004. Note m003 and m004 both have
the same volume of 2.02988 . . . .

For a Dehn filling slope s on a cusped manifold M yielding a
hyperbolic orbifold, define

∆V(s) = Vol(M)− Vol(M(s)).

The proof of the main theorem is completed by proving the
following:

Proposition
Fix n ≥ 15. Among all Dehn fillings of m003 or m004 that
produce link orbifolds with n–torsion, the largest value of
∆V(s) is realized by m004(n, 0) = Pn.



3. n ≥ 15. Analytic estimates on change in volume when filling.

To prove the proposition, we use the following theorem of
Hodgson and Kerckhoff.

Theorem
Let M a cusped hyperbolic 3–manifold. Let s be a slope on
some cusp of M, satisfying A(s) ≤ f(1/

√
3) = 0.68653 . . . . Then

M(s) is hyperbolic and∫ 1

z̃
l(z)dz ≤ ∆V(s) ≤

∫ 1

ẑ
u(z)dz ,

where ẑ = f−1(A(s)) and z̃ = f̃−1(A(s)).

If you’re wondering about a few definitions here...



3. n ≥ 15. Oh no!

...I think this will make you stop wondering.

A(s) = (2π)2Area(∂C)
ℓ(s)2 ,

l(z) = 3.3957 z2(z2 − 3)(z4 + 4z2 − 1)
2 (z4 − 6z2 + 1)(z2 + 1)2 ,

u(z) = 3.3957 z2(z4 + 4z2 − 1)
2 (z2 + 1)3 ,

f(z) = 3.3957(1− z)
exp

(∫ z
1 F(w)dw

) where F(z) = −z
4 + 6z2 + 4z+ 1
(z+ 1)(z2 + 1)2 ,

f̃(z) = 3.3957(1− z)
exp

(∫ z
1 F̃(w)dw

) where

F̃(z) = − z6 + 7z4 + 12z3 − 9z2 − 4z+ 1
(z+ 1)(z2 + 1)(z2 + 2z− 1)(z2 − 2z− 1) .



3. n ≥ 15. Analytic estimates on change in volume when filling.

Let s̃ be the filling of m004 yielding Pn.
We show that the lower bound from the Hodgson–Kerckhoff
theorem on ∆V(s̃) is larger than the upper bound on ∆V(s) for
any competing filling.

This involves a careful analysis of the functions that shall not
be shown again.

∫ 1

z̃
l(z)dz ≤ ∆V(s) ≤

∫ 1

ẑ
u(z)dz ,



Thank you.
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