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Theme

How does topological complexity affect the volume of a
hyperbolic 3–orbifold?

We’ll see how to get a lower bound on the volume of a
hyperbolic 3–orbifold containing an incompressible
2–suborbifold by understanding the topology of the
complement of the 2–suborbifold.
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2–orbifolds

A 2–dimensional orbifold O is a space locally modeled on B2/G
where B2 is a 2–ball and G is a (possibly trivial) finite group
acting on B2 by rotations or reflections.

We’ll mainly be concerned with orientable 2–orbifolds. In this
case, G consists only of rotations.



2-orbifolds



Orbifold annuli

There are 5 kinds of orbifold annuli (quotients of a standard
S1 × I).



3–orbifolds

An orientable 3–dimensional orbifold O is a space locally
modeled on B3/G where B3 is a 3–ball and G ⊂ SO(3) is a finite
group acting on B3 by rotations.

An orientable 3–orbifold O can be described by specifying:

• an orientable 3–manifold XO (the base space), and
• an embedded trivalent graph ΣO with edges labeled by
integers ≥ 2 (the singular locus).



3–orbifolds

ΣO and its labeling specify the local groups G. The integer
labeling an edge is called the torsion order of the edge.

A neighborhood of a point in an edge labeled n is the quotient
of B3 by Zn acting by rotations.

A neighborhood of a vertex of ΣO is the quotient of B3 by an
orientation preserving spherical triangle group.



Hyperbolic 3–orbifolds

A 3–orbifold is called hyperbolic if O = H3/Γ where Γ is a
discrete subgroup of Isom+(H3). Torsion in Γ gives rise to the
singular locus.

What does this look like?



Figure 1: Looking along an edge labeled 9 in the hyperbolic structure
on m004(9, 0).



Figure 2: Looking towards a (2, 3, 5) vertex in a doubled hyperbolic
tetrahedron.



main result



The idea of the statement of the theorem

“Theorem”

Let O be compact, orientable, hyperbolic 3–orbifold with base
space S3. Let S be an incompressible 2–suborbifold of O with
base space S2 and cone points having torsion orders ni for
i ∈ {1, . . . , k}.

Then the volume of O is bounded below by a function of the ni
and the topology of O \\S .

O \\S is the path metric completion of O \ S .



Main theorem

“Theorem”

Let O be compact, orientable, hyperbolic 3–orbifold with base
space S3. Let S be an incompressible 2–suborbifold of O with
base space S2 and cone points having torsion orders ni for
i ∈ {1, . . . , k}.

Then the volume of O is bounded below by a function of the ni
and the topology of O \\S .

In practice, this function can be computed by hand for any
given example. We show how to detect the guts of O \\S which
in turn indicates how to compute the function.



Actual theorem

Theorem
In the case where there are four cone points, the volume
bound is one of the following. The cases depend on the
topology of O \\S .

1. Vol(O) ≥ −V8χorb(S) = V8
(
2−

∑4
i=1 1/ni

)
, or

2. Vol(O) ≥ 1
2V8

(
−χorb(S) + 1− 1/ni1 − 1/ni2

)
, (where

{ni1 ,ni2} ⊂ {n1,n2,n3,n4}), or
3. Vol(O) ≥ − 1

2V8χorb(S), or
4. Vol(O) ≥ 1

2V8
(
2− 1/ni1 − 1/ni2 − 1/ni3 − 1/ni4

)
, (where

{ni1 ,ni2 ,ni3 ,ni4} ⊂ {n1,n2,n3,n4}), or
5. Vol(O) ≥ 1

2V8
(
1− 1/ni1 − 1/ni2

)
, (where

{ni1 ,ni2} ⊂ {n1,n2,n3,n4}), or
6. O \\S is hungry.



Agol-Storm-Thurston for orbifolds

Theorem (Agol-Storm-Thuston 2005)
Let O be a closed, hyperbolic 3–orbifold and S ⊂ O be an
orbifold incompressible 2–suborbifold. Then

Vol(O) ≥ −V8χorb(Guts(O \\S)).

V8 ≈ 3.66386 is the volume of the regular, ideal, hyperbolic
octahedron. O \\S is the path metric completion of the
complement of S in O.



Guts of O \\S (hand wavy)

O is a hyperbolic 3–orbifold containing an incompressible
2–suborbifold S .

O \ S has an incomplete hyperbolic structure obtained by just
deleting S .

Can we complete O \ S to a hyperbolic orbifold with totally
geodesic boundary?

Not always. If we could, then its double along S would be
atoroidal, so we need O \\S to be acylindrical.

Guts(O \\S) is obtained by throwing away the problematic
parts that obstruct this completion.
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Guts

O is a hyperbolic 3–orbifold.

N = Guts(O) is a codimension 0 suborbifold such that
∂N = ∂0N ∪ ∂1N where

• ∂0N = N ∩ ∂O,
• ∂1N consists of annuli and tori with ∂∂1N = ∂1N ∩ ∂O, and
• (N, ∂1N) is the maximal pared acylindrical suborbifold
such that no components of N are solid orbifold tori.

Can replace third condition with: Guts(O) \ ∂1Guts(O) admits
a complete hyperbolic structure with totally geodesic
boundary and the double of O \ N is a graph orbifold.

For a cheap laugh, I’m saying that O \\S is hungry if it has
empty guts. (In the context of manifolds, if the guts of M \\S is
empty, then S is called a fibroid.)
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Pared orbifolds

A pared orbifold is a pair (O,P), where O is a compact,
orientable, irreducible 3-orbifold and P ⊂ ∂O is a union of
essential orbifold annuli and tori (possibly empty) such that

1. every abelian, noncyclic subgroup of π1(O) is conjugate to
a subgroup of the fundamental group of a component of
P, and

2. every map of an orbifold annulus (A, ∂A) → (O,P) that is
π1−injective deforms, as a map of pairs, into P.

P is called the parabolic locus of (O,P), and we define ∂0O to
be ∂O − int(P).



To prove the main theorem, we look at O \\S and show how to
find the annuli that appear in ∂1Guts(O \\S). The volume
bounds then come from applying Agol-Storm-Thurston and
thinking about how the various boundary components of the
guts can contribute to the volume.

We also give a complete characterization of what the orbifold
O \\S looks like in the case of empty guts.



An example



An example

S is an incompressible 2–suborbifold.



An example

One component of O \\S . This is essentially the only way that
a non-singular annulus (in green) can arise.



An example

This is the guts of the picture on the previous slide. It’s Euler
characteristic is − 11

10 , so this portion contributes
− 1
2
(−11
10

)
V8 ≈ 2.015 to the volume bound.



An example

The other component of O \\S . The green surface is a singular
annulus. The portion on the right is an orbifold I–bundle, so is
not part of the guts.



An example

This is the guts of the picture on the previous slide. It has
Euler characteristic − 1

2 , so contributes −
1
2
(−1
2
)
V8 ≈ 0.915 to

the volume bound.



An example

Summing the bounds from either side of S , we find that
Vol(O) ≥ 2.015.

According to Orb, the actual volume of O is
about 12.3.



An example

Summing the bounds from either side of S , we find that
Vol(O) ≥ 2.015. According to Orb, the actual volume of O is
about 12.3.



Thank you.
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