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What is a 3-orbifold?

Base space = XO = Closed, orientable, three-dimensional
manifold.



What is a 3-orbifold?

XO

ΣO

Singular locus = ΣO = trivalent graph labeled by natural
numbers ≥ 2 embedded in XO.



What is 3-orbifold?

(p,q, r) ∈ {(2,2,n), (2,3,3), (2,3,4), (2,3,5)}
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Mostow–Prasad and Dunbar–Meyerhoff

I A 3–orbifold O is hyperbolic if O = H3/Γ for some discrete
subgroup Γ ≤ Isom(H3).

I Mostow Rigidity implies that the function

(XO,ΣO) 7→ VolH3(O)

is well–defined for O hyperbolic.
I Dunbar–Meyerhoff implies that in any subclass of

finite–volume hyperbolic 3–orbifolds, we can find a
member of smallest volume.

I Motivating question:
What is the smallest <insert adjective here> hyperbolic
3–orbifold?
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What is the smallest volume hyperbolic 3–orbifold?

Marshall–Martin (2012) identified the smallest volume
hyperbolic 3–orbifold. It has volume 0.03905 . . . .
Builds on a large body of work of subsets of {Gehring,
Machlachlan, Marshall, Martin, Reid}
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What is the smallest volume hyperbolic 3–orbifold
having no singular locus?



What is the smallest volume hyperbolic 3–manifold?

Gabai–Meyerhoff–Milley have proved that the Weeks manifold
is the smallest volume hyperbolic 3–manifold. It has volume
0.9427...

(5,2)
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What is the smallest volume hyperbolic 3–orbifold
having no vertices in its singular locus?

I A link orbifold is one with no vertices in its singular locus.
I Gehring, Marshall, and Martin showed that a link orbifold

must have volume at least 0.041.
I They speculated that the smallest volume link orbifold

should have significantly larger volume.
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What is the smallest volume hyperbolic 3–orbifold
having no vertices in its singular locus?

I A link orbifold is one with no vertices in its singular locus.

Conjecture (A-Futer)
The link orbifold pictured is the unique hyperbolic link orbifold of
minimal volume. Its volume is 0.1571 . . . .

I This volume is one–sixth the volume of the Weeks manifold.
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Results

Theorem (A-Futer (2013))
If O has

I singular locus a knot with base space the 3–sphere, then
Vol(O) ≥ 0.31423...

I singular locus a link with base space the 3–sphere, then
Vol(O) ≥ 0.15711...
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Results

Theorem (A-Futer (2013))
If O is a link orbifold with 2–torsion null–homologous, then
Vol(O) ≥ 0.1185.



Higher torsion

Let Ln be the set of hyperbolic link orbifolds with all torsion
orders at least n.

Theorem (A-Futer (2014 in preparation))
Let n be 4, 6, or ≥ 8 and let O ∈ Ln. Then the volume of O is at
least the volume of the figure figure–8 knot in S3, labeled n.



Higher torsion
Let Ln be the set of hyperbolic link orbifolds with all torsion
orders at least n.

Theorem (A-Futer (2014 in preparation))
Let n be 4, 6, or ≥ 8 and let O ∈ Ln. Then the volume of O is at
least the volume of the figure figure–8 knot in S3, labeled n.

n Volume
4 0.50747080320
6 1.22128745890
8 1.54386327614
9 1.6386006808

10 1.7085709483
11 1.76158141128
12 1.8026332233
13 1.83503265952
14 1.86102867909



Main techniques:

I Can assume all torsion orders in O are n.
I Then:

Drill
and

Fill
and pay attention
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Drill

I Consider cusped manifold MO = O \ ΣO

I For n = 4,6,8 and if Vol(MO) is big (≥ 2.848), use
Agol–Dunfield:

Vol(MO)

Vol(O)
≤ f (R)

where R is the (maximal) radius of an embedded collar of
the singular locus.
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Agol–Dunfield:
Vol(MO)

Vol(O)
≤ f (R)

where R is the (maximal) radius of an embedded collar of
the singular locus.



Drill

I Gehring–Martin: lower bounds on collar radius in terms of
n

R ≥ c(n)



Drill

I Combine Agol–Dunfield and Gehring–Martin:

Theorem (Agol-Dunfield + Gehring-Martin)

Vol(MO)

Vol(O)
≤ f (n)



Drill

I If n ≥ 9 and Vol(MO) is big, we use a remark of
Hodgson–Masai (an application of Hodgson–Kerckhoff):

−7.05 ≤ π2

Vol(MO)− VolO
−Q(a,b) ≤ 5.82

(Q(a,b) is the normalized length of the filling slope...)



Fill

I If Vol(MO) < 2.848, then Gabai–Meyerhoff–Milley’s mom
technology tells us that MO is one of ten SnapPea census
manifolds.

MO ∈ {m003,m004,m006,m007,m009,m010,m011,
m015,m016, or m017}



Fill

MO ∈ {m003,m004,m006,m007,m009,m010,m011,
m015,m016, or m017}

I O is a Dehn filling of MO.

I In order for Vol(O) to have volume less than our target
volume, Futer–Kalfagianni-Purcell tells us that the filling
slope has to be one of finitely many possibilites.

I Use Snap to construct triangulations on each filling.
I Use Milley’s implementation of Moser’s algorithm to

rigorously check that all (but one) of these fillings is actually
hyperbolic and has volume above the target volume.
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(also)

many special cases that have no place in a 15 minute talk...



Thank you!


